Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 168: 104113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527710

RESUMO

Ticks, ectoparasitic arachnids, are prominent disease vectors impacting both humans and animals. Their unique blood-feeding phase involves significant abdominal cuticle expansion, sharing certain similarities with insects. However, vital aspects, including the mechanisms of cuticle expansion, changes in cuticular protein composition, chitin synthesis, and cuticle function, remain poorly understood. Given that the cuticle expansion is crucial for complete engorgement of the ticks, addressing these knowledge gaps is essential. Traditional tick research involving live animal hosts has inherent limitations, such as ethical concerns and host response variability. Artificial membrane feeding systems provide an alternative approach, offering controlled experimental conditions and reduced ethical dilemmas. These systems enable precise monitoring of tick attachment, feeding parameters, and pathogen acquisition. Despite the existence of various methodologies for artificial tick-feeding systems, there is a pressing need to enhance their reproducibility and effectiveness. In this context, we introduce an improved tick-feeding system that incorporates adjustments related to factors like humidity, temperature, and blood-feeding duration. These refinements markedly boost tick engorgement rates, presenting a valuable tool for in-depth investigations into tick cuticle biology and facilitating studies on molting. This refined system allows for collecting feeding ticks at specific stages, supporting research on tick cuticle biology, and evaluating chemical agents' efficacy in the engorgement process.


Assuntos
Substitutos Sanguíneos , Ixodes , Humanos , Animais , Reprodutibilidade dos Testes , Biologia
2.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293037

RESUMO

Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a high intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.

3.
Redox Biol ; 67: 102935, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37864875

RESUMO

Most coagulase-negative staphylococcal species, including the opportunistic pathogen Staphylococcus epidermidis, struggle to maintain redox homeostasis and grow under nitrosative stress. Under these conditions, growth can only resume once nitric oxide (NO) is detoxified by the flavohemoglobin Hmp. Paradoxically, S. epidermidis produces endogenous NO through its genetically encoded nitric oxide synthase (seNOS) and heavily relies on its activity for growth. In this study, we investigate the basis of the growth advantage attributed to seNOS activity. Our findings reveal that seNOS supports growth by countering Hmp toxicity. S. epidermidis relies on Hmp activity for its survival in the host under NO stress. However, in the absence of nitrosative stress, Hmp generates significant amounts of the harmful superoxide radical (O2•-) from its heme prosthetic group which impedes growth. To limit Hmp toxicity, nitrite (NO2-) derived from seNOS promotes CymR-CysK regulatory complex activity, which typically regulates cysteine metabolism, but we now demonstrate to also repress hmp transcription. These findings reveal a critical mechanism through which the bacterial NOS-Hmp axis drives staphylococcal fitness.


Assuntos
Proteínas de Bactérias , Estresse Oxidativo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução , Óxido Nítrico/metabolismo
4.
Infect Immun ; 90(11): e0042822, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36286525

RESUMO

Biofilms are bacterial communities characterized by antibiotic tolerance. Staphylococcus aureus is a leading cause of biofilm infections on medical devices, including prosthetic joints, which represent a significant health care burden. The major leukocyte infiltrate associated with S. aureus prosthetic joint infection (PJI) is granulocytic myeloid-derived suppressor cells (G-MDSCs), which produce IL-10 to promote biofilm persistence by inhibiting monocyte and macrophage proinflammatory activity. To determine how S. aureus biofilm responds to G-MDSCs and macrophages, biofilms were cocultured with either leukocyte population followed by RNA sequencing. Several genes involved in fermentative pathways were significantly upregulated in S. aureus biofilm following G-MDSC coculture, including formate acetyltransferase (pflB), which catalyzes the conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. A S. aureus pflB mutant (ΔpflB) did not exhibit growth defects in vitro. However, ΔpflB formed taller and more diffuse biofilm compared to the wild-type strain as revealed by confocal microscopy. In a mouse model of PJI, the bacterial burden was significantly reduced with ΔpflB during later stages of infection, which coincided with decreased G-MDSC influx and increased neutrophil recruitment, and ΔpflB was more susceptible to macrophage killing. Although formate was significantly reduced in the soft tissue surrounding the joint of ΔpflB-infected mice levels were increased in the femur, suggesting that host-derived formate may also influence bacterial survival. This was supported by the finding that a ΔpflBΔfdh strain defective in formate production and catabolism displayed a similar phenotype to ΔpflB. These results revealed that S. aureus formate metabolism is important for promoting biofilm persistence.


Assuntos
Artrite Infecciosa , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus , Infecções Estafilocócicas/microbiologia , Biofilmes , Monócitos/metabolismo , Artrite Infecciosa/metabolismo , Formiatos/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782466

RESUMO

The transition from growth to stationary phase is a natural response of bacteria to starvation and stress. When stress is alleviated and more favorable growth conditions return, bacteria resume proliferation without a significant loss in fitness. Although specific adaptations that enhance the persistence and survival of bacteria in stationary phase have been identified, mechanisms that help maintain the competitive fitness potential of nondividing bacterial populations have remained obscure. Here, we demonstrate that staphylococci that enter stationary phase following growth in media supplemented with excess glucose, undergo regulated cell death to maintain the competitive fitness potential of the population. Upon a decrease in extracellular pH, the acetate generated as a byproduct of glucose metabolism induces cytoplasmic acidification and extensive protein damage in nondividing cells. Although cell death ensues, it does not occur as a passive consequence of protein damage. Instead, we demonstrate that the expression and activity of the ClpXP protease is induced, resulting in the degeneration of cellular antioxidant capacity and, ultimately, cell death. Under these conditions, inactivation of either clpX or clpP resulted in the extended survival of unfit cells in stationary phase, but at the cost of maintaining population fitness. Finally, we show that cell death from antibiotics that interfere with bacterial protein synthesis can also be partly ascribed to the corresponding increase in clpP expression and activity. The functional conservation of ClpP in eukaryotes and bacteria suggests that ClpP-dependent cell death and fitness maintenance may be a widespread phenomenon in these domains of life.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Staphylococcus aureus/enzimologia , Ácido Acético , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Morte Celular , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Staphylococcus aureus/genética
6.
mBio ; 13(1): e0282721, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100878

RESUMO

The Staphylococcus aureus cidABC and lrgAB operons encode members of a well-conserved family of proteins thought to be involved in programmed cell death (PCD). Based on the structural similarities that CidA and LrgA share with bacteriophage holins, we have hypothesized that these proteins function by forming pores within the cytoplasmic membrane. To test this, we utilized a "lysis cassette" system that demonstrated the abilities of the cidA and lrgA genes to support bacteriophage endolysin-induced cell lysis. Typical of holins, CidA- and LrgA-induced lysis was dependent on the coexpression of endolysin, consistent with the proposed holin-like functions of these proteins. In addition, the CidA and LrgA proteins were shown to localize to the surface of membrane vesicles and cause leakage of small molecules, providing direct evidence of their hole-forming potential. Consistent with recent reports demonstrating a role for the lrgAB homologues in other bacterial and plant species in the transport of by-products of carbohydrate metabolism, we also show that lrgAB is important for S. aureus to utilize pyruvate during microaerobic and anaerobic growth, by promoting the uptake of pyruvate under these conditions. Combined, these data reveal that the CidA and LrgA membrane proteins possess holin-like properties that play an important role in the transport of small by-products of carbohydrate metabolism. IMPORTANCE The Staphylococcus aureus cidABC and lrgAB operons represent the founding members of a large, highly conserved family of genes that span multiple kingdoms of life. Despite the fact that they have been shown to be involved in bacterial PCD, very little is known about the molecular/biochemical functions of the proteins they encode. The results presented in this study reveal that the cidA and lrgA genes encode proteins with bacteriophage holin-like functions, consistent with their roles in cell death. However, these studies also demonstrate that these operons are involved in the transport of small metabolic by-products of carbohydrate metabolism, suggesting an intriguing link between these two seemingly disparate processes.


Assuntos
Bacteriófagos , Staphylococcus aureus , Staphylococcus aureus/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas de Membrana/metabolismo , Bacteriófagos/metabolismo , Metabolismo dos Carboidratos , Piruvatos , Proteínas de Bactérias/metabolismo
7.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900803

RESUMO

Staphylococcus aureus is a major cause of prosthetic joint infection (PJI), which is characterized by biofilm formation. S. aureus biofilm skews the host immune response toward an anti-inflammatory profile by the increased recruitment of myeloid-derived suppressor cells (MDSCs) that attenuate macrophage proinflammatory activity, leading to chronic infection. A screen of the Nebraska Transposon Mutant Library identified several hits in the ATP synthase operon that elicited a heightened inflammatory response in macrophages and MDSCs, including atpA, which encodes the alpha subunit of ATP synthase. An atpA transposon mutant (ΔatpA) had altered growth kinetics under both planktonic and biofilm conditions, along with a diffuse biofilm architecture that was permissive for leukocyte infiltration, as observed by confocal laser scanning microscopy. Coculture of MDSCs and macrophages with ΔatpA biofilm elicited significant increases in the proinflammatory cytokines interleukin 12p70 (IL-12p70), tumor necrosis factor alpha (TNF-α), and IL-6. This was attributed to increased leukocyte survival resulting from less toxin and protease production by ΔatpA biofilm as determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The enhanced inflammatory response elicited by ΔatpA biofilm was cell lysis-dependent since it was negated by polyanethole sodium sulfanate treatment or deletion of the major autolysin, Atl. In a mouse model of PJI, ΔatpA-infected mice had decreased MDSCs concomitant with increased monocyte/macrophage infiltrates and proinflammatory cytokine production, which resulted in biofilm clearance. These studies identify S. aureus ATP synthase as an important factor in influencing the immune response during biofilm-associated infection and bacterial persistence.IMPORTANCE Medical device-associated biofilm infections are a therapeutic challenge based on their antibiotic tolerance and ability to evade immune-mediated clearance. The virulence determinants responsible for bacterial biofilm to induce a maladaptive immune response remain largely unknown. This study identified a critical role for S. aureus ATP synthase in influencing the host immune response to biofilm infection. An S. aureus ATP synthase alpha subunit mutant (ΔatpA) elicited heightened proinflammatory cytokine production by leukocytes in vitro and in vivo, which coincided with improved biofilm clearance in a mouse model of prosthetic joint infection. The ability of S. aureus ΔatpA to augment host proinflammatory responses was cell lysis-dependent, as inhibition of bacterial lysis by polyanethole sodium sulfanate or a ΔatpAΔatl biofilm did not elicit heightened cytokine production. These studies reveal a critical role for AtpA in shaping the host immune response to S. aureus biofilm.


Assuntos
Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/imunologia , Biofilmes/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia , Complexos de ATP Sintetase/metabolismo , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
8.
Nat Microbiol ; 5(10): 1271-1284, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32661313

RESUMO

Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI), resulting in considerable disability and prolonged treatment. It is known that host leukocyte IL-10 production is required for S. aureus biofilm persistence in PJI. An S. aureus bursa aurealis Tn library consisting of 1,952 non-essential genes was screened for mutants that failed to induce IL-10 in myeloid-derived suppressor cells (MDSCs), which identified a critical role for bacterial lactic acid biosynthesis. We generated an S. aureus ddh/ldh1/ldh2 triple Tn mutant that cannot produce D- or L-lactate. Co-culture of MDSCs or macrophages with ddh/ldh1/ldh2 mutant biofilm produced substantially less IL-10 compared with wild-type S. aureus, which was also observed in a mouse model of PJI and led to reduced biofilm burden. Using MDSCs recovered from the mouse PJI model and in vitro leukocyte-biofilm co-cultures, we show that bacterial-derived lactate inhibits histone deacetylase 11, causing unchecked HDAC6 activity and increased histone 3 acetylation at the Il-10 promoter, resulting in enhanced Il-10 transcription in MDSCs and macrophages. Finally, we show that synovial fluid of patients with PJI contains elevated amounts of D-lactate and IL-10 compared with control subjects, and bacterial lactate increases IL-10 production by human monocyte-derived macrophages.


Assuntos
Biofilmes , Histona Desacetilases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Ácido Láctico/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Biomarcadores , Vias Biossintéticas , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Infecções Estafilocócicas/metabolismo
9.
PLoS Pathog ; 15(1): e1007538, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608981

RESUMO

Staphylococcus aureus causes acute and chronic infections resulting in significant morbidity. Urease, an enzyme that generates NH3 and CO2 from urea, is key to pH homeostasis in bacterial pathogens under acidic stress and nitrogen limitation. However, the function of urease in S. aureus niche colonization and nitrogen metabolism has not been extensively studied. We discovered that urease is essential for pH homeostasis and viability in urea-rich environments under weak acid stress. The regulation of urease transcription by CcpA, Agr, and CodY was identified in this study, implying a complex network that controls urease expression in response to changes in metabolic flux. In addition, it was determined that the endogenous urea derived from arginine is not a significant contributor to the intracellular nitrogen pool in non-acidic conditions. Furthermore, we found that during a murine chronic renal infection, urease facilitates S. aureus persistence by promoting bacterial fitness in the low-pH, urea-rich kidney. Overall, our study establishes that urease in S. aureus is not only a primary component of the acid response network but also an important factor required for persistent murine renal infections.


Assuntos
Staphylococcus aureus/metabolismo , Urease/metabolismo , Urease/fisiologia , Ácidos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Feminino , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Rim/microbiologia , Nefropatias/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrogênio/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidade , Ureia/metabolismo , Urease/genética
10.
Adv Microb Physiol ; 72: 147-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29778214

RESUMO

Nitric oxide (NO) is a potent inhibitor of diverse cellular processes in bacteria. Therefore, it was surprising to discover that several bacterial species, primarily Gram-positive organisms, harboured a gene encoding nitric oxide synthase (NOS). Recent attempts to characterize bacterial NOS (bNOS) have resulted in the discovery of structural features that may allow it to function as a NO dioxygenase and produce nitrate in addition to NO. Consistent with this characterization, investigations into the biological function of bNOS have also emphasized a role for NOS-dependent nitrate and nitrite production in aerobic and microaerobic respiration. In this review, we aim to compare, contrast, and summarize the structure, biochemistry, and biological role of bNOS with mammalian NOS and discuss how recent advances in our understanding of bNOS have enabled efforts at designing inhibitors against it.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxigenases/metabolismo , Aerobiose , Modelos Moleculares , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/genética , Nitritos/metabolismo , Oxigenases/química , Oxigenases/genética , Conformação Proteica
11.
mBio ; 8(4)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765220

RESUMO

Macrophage-derived nitric oxide (NO·) is a crucial effector against invading pathogens. Yet, paradoxically, several bacterial species, including some pathogens, are known to endogenously produce NO· via nitric oxide synthase (NOS) activity, despite its apparent cytotoxicity. Here, we reveal a conserved role for bacterial NOS in activating aerobic respiration. We demonstrate that nitrite generated from endogenous NO· decomposition stimulates quinol oxidase activity in Staphylococcus aureus and increases the rate of cellular respiration. This not only supports optimal growth of this organism but also prevents a dysbalance in central metabolism. Further, we also show that activity of the SrrAB two-component system alleviates the physiological defects of the nos mutant. Our findings suggest that NOS and SrrAB constitute two distinct but functionally redundant routes for controlling staphylococcal respiration during aerobic growth.IMPORTANCE Despite its potential autotoxic effects, several bacterial species, including pathogenic staphylococcal species, produce NO· endogenously through nitric oxide synthase (NOS) activity. Therefore, how endogenous NO· influences bacterial fitness remains unclear. Here we show that the oxidation of NO· to nitrite increases aerobic respiration and consequently optimizes central metabolism to favor growth. Importantly, we also demonstrate that cells have a "fail-safe" mechanism that can maintain respiratory activity through the SrrAB two-component signaling regulon should NOS-derived nitrite levels decrease. These findings identify NOS and SrrAB as critical determinants of staphylococcal respiratory control and highlight their potential as therapeutic targets.


Assuntos
Óxido Nítrico Sintase/metabolismo , Nitritos/metabolismo , Staphylococcus aureus/enzimologia , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mutação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Oxirredução , Estresse Oxidativo , Oxirredutases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
12.
Mol Microbiol ; 101(6): 942-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27253847

RESUMO

The Staphylococcus aureus LysR-type transcriptional regulator, CidR, activates the expression of two operons including cidABC and alsSD that display pro- and anti-death functions, respectively. Although several investigations have focused on the functions of different genes associated with these operons, the collective role of the CidR regulon in staphylococcal physiology is not clearly understood. Here we reveal that the primary role of this regulon is to limit acetate-dependent potentiation of cell death in staphylococcal populations. Although both CidB and CidC promote acetate generation and cell death, the CidR-dependent co-activation of CidA and AlsSD counters the effects of CidBC by redirecting intracellular carbon flux towards acetoin formation. From a mechanistic standpoint, we demonstrate that CidB is necessary for full activation of CidC, whereas CidA limits the abundance of CidC in the cell.


Assuntos
Proteínas de Bactérias/genética , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Óperon , Elementos Reguladores de Transcrição , Regulon , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
mSphere ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340697

RESUMO

As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K(+)) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K(+) uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K(+) deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K(+) uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K(+) uptake in S. aureus revealed that the Ktr-mediated K(+) transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K(+) uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K(+) uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K(+) uptake in establishing efficient carbon utilization.

14.
J Bacteriol ; 198(7): 1114-22, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26811317

RESUMO

UNLABELLED: The death and lysis of a subpopulation in Staphylococcus aureus biofilm cells are thought to benefit the surviving population by releasing extracellular DNA, a critical component of the biofilm extracellular matrix. Although the means by which S. aureus controls cell death and lysis is not understood, studies implicate the role of the cidABC and lrgAB operons in this process. Recently, disruption of the srrAB regulatory locus was found to cause increased cell death during biofilm development, likely as a result of the sensitivity of this mutant to hypoxic growth. In the current study, we extended these findings by demonstrating that cell death in the ΔsrrAB mutant is dependent on expression of the cidABC operon. The effect of cidABC expression resulted in the generation of increased reactive oxygen species (ROS) accumulation and was independent of acetate production. Interestingly, consistently with previous studies, cidC-encoded pyruvate oxidase was found to be important for the generation of acetic acid, which initiates the cell death process. However, these studies also revealed for the first time an important role of the cidB gene in cell death, as disruption of cidB in the ΔsrrAB mutant background decreased ROS generation and cell death in a cidC-independent manner. The cidB mutation also caused decreased sensitivity to hydrogen peroxide, which suggests a complex role for this system in ROS metabolism. Overall, the results of this study provide further insight into the function of the cidABC operon in cell death and reveal its contribution to the oxidative stress response. IMPORTANCE: The manuscript focuses on cell death mechanisms in Staphylococcus aureus and provides important new insights into the genes involved in this ill-defined process. By exploring the cause of increased stationary-phase death in an S. aureus ΔsrrAB regulatory mutant, we found that the decreased viability of this mutant was a consequence of the overexpression of the cidABC operon, previously shown to be a key mediator of cell death. These investigations highlight the role of the cidB gene in the death process and the accumulation of reactive oxygen species. Overall, the results of this study are the first to demonstrate a positive role for CidB in cell death and to provide an important paradigm for understanding this process in all bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Morte Celular/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Transcrição Gênica/fisiologia , Proteínas de Bactérias/genética , Biofilmes , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , beta-Galactosidase/metabolismo
15.
Insect Biochem Mol Biol ; 60: 1-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25747009

RESUMO

Chitin, a homopolymer of ß-1-4-linked N-acetylglucosamine synthesized by chitin synthase A (Chs-A), is organized in the procuticle of the postembryonic cuticle or exoskeleton, which is composed of laminae stacked parallel to the cell surface to give stability and integrity to the underlying insect epidermal and other tissues. Our previous work has revealed an important role for two proteins from Tribolium castaneum named Knickkopf (TcKnk) and Retroactive (TcRtv) in postembryonic cuticular chitin maintenance. TcKnk and TcRtv were shown to be required for protection and organization of newly synthesized procuticular chitin. To study the functions of TcKnk and TcRtv in serosal and larval cuticles produced during embryogenesis in T. castaneum, dsRNAs specific for these two genes were injected into two week-old adult females. The effects of dsRNA treatment on ovarial integrity, oviposition, egg hatching and adult survival were determined. Insects treated with dsRNA for chitin synthase-A (TcChs-A) and tryptophan oxygenase (TcVer) were used as positive and negative controls for these experiments, respectively. Like TcChs-A RNAi, injection of dsRNA for TcKnk or TcRtv into adult females exhibited no adult lethality and oviposition was normal. However, a vast majority of the embryos did not hatch. The remaining (∼10%) of the embryos hatched into first instar larvae that died without molting to the second instar. Chitin content analysis following TcKnk and TcRtv parental RNAi revealed approximately 50% reduction in chitin content of eggs in comparison with control TcVer RNAi, whereas TcChs-A dsRNA-treatment led to >90% loss of chitin. Furthermore, transmission electron microscopic (TEM) analysis of serosal cuticle from TcChs-A, TcKnk and TcRtv dsRNA-treated insects revealed a complete absence of laminar organization of serosal (and larval) procuticle in comparison with TcVer dsRNA-treated controls, which exhibited normal laminar organization of procuticular chitin. The results of this study demonstrate that in addition to their essential roles in maintenance and organization of chitin in epidermal cuticle in larval and later stages of insect development, TcKnk and TcRtv also are required for egg hatch, chitin maintenance and laminar organization of both serosal and larval cuticle during embryonic development of T. castaneum.


Assuntos
Proteínas de Insetos/metabolismo , Tribolium/embriologia , Animais , Feminino , Interferência de RNA , Tribolium/metabolismo
16.
Bio Protoc ; 5(17)2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27182534

RESUMO

Under aerobic conditions, Staphylococcus aureus (S. aureus) primarily metabolizes glucose to acetic acid. Although normally S. aureus is able to re-utilize acetate as a carbon source following glucose exhaustion, significantly high levels of acetate in the culture media may not only be growth inhibitory but also potentiates cell death in stationary phase cultures by a mechanism dependent on cytoplasmic acidification. One consequence of acetic acid toxicity is the production of reactive oxygen species (ROS). The present protocol describes the detection of ROS in S. aureus undergoing cell death by electron paramagnetic resonance (EPR) spectroscopy. Using 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) as a cell permeable spin probe, we demonstrate the detection of various oxygen radicals generated by bacteria. Although standardized for S. aureus, the methods described here should be easily adapted for other bacterial species. This protocol is adapted from Thomas et al. (2014) and Thomas et al. (2010).

17.
PLoS Genet ; 10(8): e1004537, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144557

RESUMO

Our recent study on the functional analysis of the Knickkopf protein from T. castaneum (TcKnk), indicated a novel role for this protein in protection of chitin from degradation by chitinases. Knk is also required for the laminar organization of chitin in the procuticle. During a bioinformatics search using this protein sequence as the query, we discovered the existence of a small family of three Knk-like genes (including the prototypical TcKnk) in the T. castaneum genome as well as in all insects with completed genome assemblies. The two additional Knk-like genes have been named TcKnk2 and TcKnk3. Further complexity arises as a result of alternative splicing and alternative polyadenylation of transcripts of TcKnk3, leading to the production of three transcripts (and by inference, three proteins) from this gene. These transcripts are named TcKnk3-Full Length (TcKnk3-FL), TcKnk3-5' and TcKnk3-3'. All three Knk-family genes appear to have essential and non-redundant functions. RNAi for TcKnk led to developmental arrest at every molt, while down-regulation of either TcKnk2 or one of the three TcKnk3 transcripts (TcKnk3-3') resulted in specific molting arrest only at the pharate adult stage. All three Knk genes appear to influence the total chitin content at the pharate adult stage, but to variable extents. While TcKnk contributes mostly to the stability and laminar organization of chitin in the elytral and body wall procuticles, proteins encoded by TcKnk2 and TcKnk3-3' transcripts appear to be required for the integrity of the body wall denticles and tracheal taenidia, but not the elytral and body wall procuticles. Thus, the three members of the Knk-family of proteins perform different essential functions in cuticle formation at different developmental stages and in different parts of the insect anatomy.


Assuntos
Genoma de Inseto , Família Multigênica/genética , Filogenia , Tribolium/genética , Animais , Quitina/genética , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Drosophila , Proteínas de Drosophila/genética , Larva/genética , Dados de Sequência Molecular , Muda , Interferência de RNA
18.
PLoS Pathog ; 10(6): e1004205, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945831

RESUMO

Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC) and α-acetolactate synthase/decarboxylase (AlsSD) overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development.


Assuntos
Acetolactato Sintase/metabolismo , Biofilmes/crescimento & desenvolvimento , Carboxiliases/metabolismo , Piruvato Oxidase/metabolismo , Staphylococcus aureus/metabolismo , Acetatos/metabolismo , Animais , Carbono/metabolismo , Dano ao DNA , Endocardite Bacteriana/imunologia , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/patologia , Regulação Bacteriana da Expressão Gênica , Consumo de Oxigênio , Coelhos , Espécies Reativas de Oxigênio
19.
mBio ; 4(4)2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23963176

RESUMO

UNLABELLED: A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward ß-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from ß-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. IMPORTANCE: Staphylococcus epidermidis, a normal inhabitant of the human skin microflora, is the most common cause of indwelling medical device infections. In the present study, we analyzed 126 clinical S. epidermidis isolates and discovered that tricarboxylic acid (TCA) cycle dysfunctions are relatively common in the clinical environment. We determined that a dysfunctional TCA cycle enables S. epidermidis to resist oxidative stress and alter its cell surface properties, making it less susceptible to ß-lactam antibiotics.


Assuntos
Antibacterianos/farmacologia , Ciclo do Ácido Cítrico , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/metabolismo , beta-Lactamas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus epidermidis/fisiologia
20.
PLoS Genet ; 9(1): e1003268, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382702

RESUMO

Molting, or the replacement of the old exoskeleton with a new cuticle, is a complex developmental process that all insects must undergo to allow unhindered growth and development. Prior to each molt, the developing new cuticle must resist the actions of potent chitinolytic enzymes that degrade the overlying old cuticle. We recently disproved the classical dogma that a physical barrier prevents chitinases from accessing the new cuticle and showed that the chitin-binding protein Knickkopf (Knk) protects the new cuticle from degradation. Here we demonstrate that, in Tribolium castaneum, the protein Retroactive (TcRtv) is an essential mediator of this protective effect of Knk. TcRtv localizes within epidermal cells and specifically confers protection to the new cuticle against chitinases by facilitating the trafficking of TcKnk into the procuticle. Down-regulation of TcRtv resulted in entrapment of TcKnk within the epidermal cells and caused molting defects and lethality in all stages of insect growth, consistent with the loss of TcKnk function. Given the ubiquity of Rtv and Knk orthologs in arthropods, we propose that this mechanism of new cuticle protection is conserved throughout the phylum.


Assuntos
Proteínas de Transporte/genética , Proteínas de Drosophila , Proteínas de Insetos , Proteínas de Membrana , Muda , Tribolium , Animais , Quitina/biossíntese , Quitina/genética , Quitinases/genética , Quitinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Membrana/genética , Muda/genética , Muda/fisiologia , Transporte Proteico , Homologia de Sequência de Aminoácidos , Tribolium/enzimologia , Tribolium/genética , Tribolium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...